Newsprint Research

- This is a summary of research conducted at the Smithsonian Center for Materials Research and Education (SCMRE) during the summer of 2003.
- This work was conducted by two interns, Evan Quasney and Kathy Hufford, under the supervision of David Erhardt and Charles Tumosa.
- Drs. Erhardt and Tumosa may be contacted at SCMRE via these methods:

Charles Tumosa tumosac@scmre.si.edu (301) 238-3700 x 118

E

W. David Erhardt erhardtd@scmre.si.edu (301) 238-3700 x 116

Permanence and Degradation: Newsprint Over the Last 100 Years

σ

Kathy Hufford Massachusetts Institute of Technology

> Evan Quasney University of Michigan

> > Charles Tumosa, Ph.D. W. David Erhardt, Ph. D.

Introduction

- Printed material on paper dominates written communication
- Paper records have finite life ... how finite?
- Mechanical concepts addressed and discussed
- Chemical concepts linked to mechanical properties

 Scope of research newsprintspecific

Wood-based Newspapers Tested

06/01/2003 11/17/2001 11/27/2000 08/03/1999 12/02/1998 11/02/1997 07/10/1997 01/26/1997 05/07/1995 11/14/1993 02/08/1983 10/20/1983 07/07/1985 09/11/1985 12/14/1988 12/15/1988 10/25/1999 07/01/1975 12/11/1960 09/13/1950 12/02/1934 04/11/1915 10/07/1905 01/03/1890 05/07/1875

01

ĸ

Washington Post Vineland Times Journal **New York Times Christian Science Monitor** Topeka Daily Capital **Detroit Free Press Detroit Free Press** The World New York Semi-Weekly Times

Definitions

Strain = Δ length / length

- extensibility of paper
- change in length

k

 $\epsilon = \Delta L / L$

Stress = Force / Area

- 'strength' of the paper
- randomized based on sizing or technology

 $\sigma = F / A$

Stress-Strain Curve

- Graph of stress versus strain
- Basis for finding plastic and elastic regions

Tensile (Young's) Modulus - Numeric value of the

flexibility / stiffness of the paper

 $\mathsf{E} = \sigma \, / \, \varepsilon$

Definitions

Isotropic:

0

- Specimen behaves the same in all directions

Orthotropic:

- Specimen behaves differently in mutually perpendicular directions

Breaking Strain:

 Percent elongation at which a specimen fails

Breaking Stress:

- Pressure at the breaking strain; tensile strength of specimen

Region Deformation:

Elastic – Flexible Modulation of Specimen Plastic – Permanent Irreparable Damage to Specimen

General Stress-Strain Curve

E

σ

Mancellinus Antonius, circa 1500, Vertical Dir

Method

- Tests performed on screw-driven tensile tester in environmental chambers
- Incremental length change standard: 30-seconds, 1/200 (0.005) inches
- Tests performed between 42 52% RH and 22.5 24.2 deg.
 C
- 4 distinctly different sub-variations of each specimen examined

Machine v. Cross Direction

ε

σ

k

Machine Dir
 Cross Dir

E.

ε

σ

Initial Application

Individual Axial Comparison of Inked v. Uninked Paper

The Washington Post, June 1, 2003

Orthotropic behavior present in specimens

0

Very little difference between inked and uninked strains

- No great change, but a slight decreasing trend is exhibited
- Degradation small enough that overall damage is minimal
- Specimens could last 100-150 years

E

σ

ĸ

- No great change, but a slight decreasing trend is exhibited
- Degradation small enough that overall damage is minimal
- Specimens could last 100-150 years

E

σ

E

o

- No distinguishable change in strength of specimens
- Specimens will last a long time under Standard Laboratory Conditions

E

o

- No distinguishable change in strength of specimens
- Specimens will last a long time under Standard Laboratory Conditions

ε

σ

120 Year Variable Test Strain v. Time

- Loss of elastic region occurs when breaking strains drops below 0.005
- Acute fragility not present until samples are 80 years old

ε

σ

K

 Total specimen disintegration only occurs after ALL breaking strains are less than 0.003

Scientific Significance

- Newsprint can last 100 years if given nominal attention
- Archival facilities can provide up to an additional 50 100 years of viable storage

σ

k

 Flexibility and elasticity data will help build an accurate model to predict degradation

E

σ

Hydrolysis of Cellulose

Glucose Monomer

E

σ

k

Glucose – Glucose Dimer

Trimer

Method

 Samples prepared, extracted in water, filtered, and evaporated under vacuum

- Derivatized with STOX (commercial reagent containing internal standard), HMDS, and trifluoroacetic acid
- Supernatant analyzed by gas chromatography

σ

Sugars identified by comparison of retention times against internal standards

Approximate Retention Times of Sugar Peaks

E

σ

k

Standard: 16.70

Glucose: 12.57

Xylose: 10.43

Arabinose: 10.20

Glucose Dimer: 19.45

Glucose Trimer: 24.55

Xylose Dimer: 17.45

Xylose Trimer: 22.55

Sugar Content in Wood-based Newspapers

E

σ

k

Year

 Glucose and xylose levels highest in newspapers from the Industrial Revolution

 Of interest are the spikes around World War I and the relative stability of the past 20 years

History of Papermaking Technology

E

ε

k

 The Industrial Revolution (1875-1950) brought commercial use of wood-pulp paper and mass production processes

Commercial use of the acid sulfite process (1880s) and Kraft process with bleaching (1930s) caused a transition from mechanical to chemical processing

•Glucose and xylose levels peak in the World War I era

After World War I, new technology and processing techniques were invented

Glucose Fraction in Wood-based Newspapers

E

ε

ĸ

Pre-1980 glucose ratio shows a different mechanism than post-1980Kinetics study?

Changes in data from 1980 to present are particularly interesting

History of Papermaking Technology

•The USA Today Effect: Launching of the USA Today in 1982 and the use of color in newspapers

- •The environmental movement and recycling of newspapers
- •Advanced machinery requires thinner material

•Multitude of processes for newspaper manufacturers to choose from: refiner, chemical, thermo, chemothermo, isothermo, etc.

•Further research

E

8

σ

E

σ

k

Xylose is more hydrolytic and more likely to hydrolyze to monomer than is glucose

Arabinose and Xylose in Wood-based Newspapers

E

σ

k

Initial, sharp increase in arabinose, and then nearly constant value
Arabinose molecules must be located at the end of the molecule or on branches, and are hydrolyzed first

Total Measured Sugar Content vs. Breaking Strain

σ

k

Similar trends appear across other sugar dataIllustrates the presence of a surface phenomenon

Glucose Polymers vs. Breaking Strain

E

0

K

Dimer

Trimer

Hydrolysis Mechanism Conclusions

- Issue of dueling factors of technology and time in the process of degradation
- Xylan hydrolysis vs. cellulose hydrolysis
- Order of degradation, illustration of mechanistic details of hydrolysis
- Surface phenomenon

ε

()

 Ideas for further research in kinetics and the history of papermaking technology

Summary

 Mechanical and physical properties of specimens directly related to hydrolysis of cellulose and hemicellulose

- Hydrolysis of cellulose and hemicellulose affects breaking strain and plasticity of specimen
- Remaining life span of specimen can be estimated via sugar content analysis and/or mechanical testing