Organic carbon from Mars, but not biological

Molecules containing carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While these molecules have previously been found in meteorites from Mars, scientists have disagreed about how this organic carbon was formed and whether or not it came from Mars.

A new paper led by Carnegie Institution for Science's Andrew Steele provides strong evidence that this carbon did originate on Mars, although it is not biological. These findings give researchers insight into the chemical processes taking place on Mars and will help aid future quests for evidence of ancient or modern Martian life. The work is published May 24 in Science Express.

There has been little agreement among scientists about the origin of the large carbon macromolecules detected in Martian meteorites. Theories about their origin include contamination from Earth or other meteorites, the results of chemical reactions on Mars, or that they are the remnants of ancient Martian biological life.

Steele's team examined samples from 11 Martian meteorites whose ages span about 4.2 billion years of Martian history. They detected large carbon compounds in 10 of them. The molecules were found in microscopic pockets inside of grains of minerals.

Using an array of sophisticated research techniques, the team was able to show that at least some of the macromolecules of carbon were indigenous to the meteorites themselves and not related to contamination from Earth.

Next the team looked at the carbon molecules in relation to other minerals in the meteorites to see what kinds of chemical processing these samples endured before arriving on Earth. The crystalline grains encasing the carbon compounds provided a window into how the carbon molecules were created. Their findings indicate that the carbon was created during volcanism on Mars and show that Mars has been doing organic chemistry for most of its history.

"This discovery demonstrates that geochemical processes operated at temperatures high enough to partly melt rock, and therefore inconsistent with biology, produced carbon-bearing..."
macromolecules within the interior of the Mars for billions of years," said Ed Vicenzi, co-author and research scientist at the Smithsonian's Museum Conservation Institute.

"Understanding the genesis of these non-biological, carbon-containing macromolecules on Mars is crucial for developing future missions to detect evidence of life on our neighboring planet" offered lead author Steele.

In a separate paper published by American Mineralogist, available online, Steele and his team studied a meteorite called Allan Hills 84001 that was reported to contain relicts of ancient biological life on Mars. The paper demonstrated that these supposed remnants could have been created by chemical reactions involving the graphite form of carbon, rather than biological processes. Both of these papers reveal a pool of reduced carbon on Mars and will help scientist involved in future Mars missions distinguish these non-biologically formed molecules from potential life.

The research for the Science Express paper was funded by NASA, the W.M. Keck Foundation, the Natural Science and Engineering Research Council of Canada, and the Carnegie Institution for Science. The research for the American Mineralogist paper was supported by NASA.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.